Effective Nearest Neighbor Search for Aligning and Merging Range Images

نویسندگان

  • Ryusuke Sagawa
  • Tomohito Masuda
  • Katsushi Ikeuchi
چکیده

This paper describes a novel method which extends the search algorithm of a k-d tree for aligning and merging range images. If the nearest neighbor point is far from a query, many of the leaf nodes must be examined during the search, which actually will not finish in logarithmic time. However, such a distant point is not as important as the nearest neighbor in many applications, such as aligning and merging range images; the reason for this is either because it is not consequently used or because its weight becomes very small. Thus, in this paper, we propose a new algorithm that does not search strictly by pruning branches if the nearest neighbor point lies beyond a certain threshold. We call the technique the Bounds-Overlap-Threshold (BOT) test. The BOT test can be applied without re-creating the kd tree if the threshold value changes. Then, we describe how we applied our new method to three applications in order to analyze its performance. Finally, we discuss the method’s effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric and Photometric Merging for Large-scale Objects

In this thesis, we consider the geometric and photometric modeling of large-scale and intricately shaped objects, such as cultural heritage objects. When modeling such objects, new issues occurred during the modeling steps which had not been considered in the previous research conducted on the modeling of small, indoor objects. Since the entire data of these objects cannot be obtained by a sing...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003